Measurement of extracellular ion fluxes using the ion-selective self-referencing microelectrode technique.
نویسندگان
چکیده
Cells from animals, plants and single cells are enclosed by a barrier called the cell membrane that separates the cytoplasm from the outside. Cell layers such as epithelia also form a barrier that separates the inside from the outside or different compartments of multicellular organisms. A key feature of these barriers is the differential distribution of ions across cell membranes or cell layers. Two properties allow this distribution: 1) membranes and epithelia display selective permeability to specific ions; 2) ions are transported through pumps across cell membranes and cell layers. These properties play crucial roles in maintaining tissue physiology and act as signaling cues after damage, during repair, or under pathological condition. The ion-selective self-referencing microelectrode allows measurements of specific fluxes of ions such as calcium, potassium or sodium at single cell and tissue levels. The microelectrode contains an ionophore cocktail which is selectively permeable to a specific ion. The internal filling solution contains a set concentration of the ion of interest. The electric potential of the microelectrode is determined by the outside concentration of the ion. As the ion concentration varies, the potential of the microelectrode changes as a function of the log of the ion activity. When moved back and forth near a source or sink of the ion (i.e. in a concentration gradient due to ion flux) the microelectrode potential fluctuates at an amplitude proportional to the ion flux/gradient. The amplifier amplifies the microelectrode signal and the output is recorded on computer. The ion flux can then be calculated by Fick's law of diffusion using the electrode potential fluctuation, the excursion of microelectrode, and other parameters such as the specific ion mobility. In this paper, we describe in detail the methodology to measure extracellular ion fluxes using the ion-selective self-referencing microelectrode and present some representative results.
منابع مشابه
The self-referencing oxygen-selective microelectrode: detection of transmembrane oxygen flux from single cells.
A self-referencing, polarographic, oxygen-selective microelectrode was developed for measuring oxygen fluxes from single cells. This technique is based on the translational movement of the microelectrode at a known frequency through an oxygen gradient, between known points. The differential current of the electrode was converted into a directional measurement of flux using the Fick equation. Op...
متن کاملNoninvasive measurement of hydrogen and potassium ion flux from single cells and epithelial structures.
This review introduces new developments in a technique for measuring the movement of ions across the plasma membrane. With the use of a self-referencing ion-selective (Seris) probe, transport mechanisms can be studied on a variety of preparations ranging from tissues to single cells. In this paper we illustrate this versatility with examples from the vas deferens and inner ear epithelium to lar...
متن کاملMeasurement and Modeling of Mean Ionic Activity Coefficient in Aqueous Solution Containing NaNO3 and Poly Ethylene Glycol
Potentiometric investigation on {H2O+NaNO3+PEG1500} mixtures were made at T=308.15K, using electrochemical cells with two ion-selective electrodes, (Na+ glass) as the cation ion-selective electrode against (NO3- solvent-polymer PVC) as the anion ion-selective electrode. The mean ionic activity coefficients of NaNO3 were measu...
متن کاملLocalization of K⁺, H⁺, Na⁺ and Ca²⁺ fluxes to the excretory pore in Caenorhabditis elegans: application of scanning ion-selective microelectrodes.
Although Caenorhabditis elegans is commonly used as a model organism for studies of cell biology, development and physiology, the small size of the worm has impeded measurements of ion transport by the excretory cell and hypodermis. Here, we use the scanning ion-selective microelectrode technique to measure efflux and influx of K(+), H(+), Na(+) and Ca(2+) in intact worms. Transport of ions int...
متن کاملIonic currents and ion fluxes in Neurospora crassa hyphae.
Voltage dependence of ionic currents and ion fluxes in a walled, turgor-regulating cell were measured in Neurospora crassa. The hyphal morphology of the model organism Neurospora simplifies cable analysis of ionic currents to determine current density for quantitative comparisons with ion fluxes. The ion fluxes were measured directly and non-invasively with self-referencing ion-selective microe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 99 شماره
صفحات -
تاریخ انتشار 2015